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ABSTRACT: The quality of channel estimation (CE) is critical to the performance of wireless communication 

systems. In addition to the conventional model based CE methods appeared in the past few decades, deep learning (DL) 

based CE methodswhich is introduced to learn the statistical characteristics of wireless channels, has emerged as a 

promising methods in recently years. For analysis, we consider two very common and widely adopted time-varying 

fading scenario. In these fading scenarios, it is generally challenging to analytically tackle the channel estimation 

problem due to its nonlinearity and non-convexity. To intelligently and effectively address this issue, deep learning is 

exploited in this paper. First, in this fading scenario, we propose a novel learning scheme for joint channel estimation 

and pilot signal design by constructing a deep autoencoder via a convolutional neural network (CNN). Through 

extensive numerical simulations, we demonstrate effectiveness and superior performance of the proposed schemes. 
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I. INTRODUCTION 

Massive multiple-input multiple-output (MIMO) has many advantages in terms of spectral and energy efficiency and 

has been envisioned as one of the key enabling technologies in the fifth generation of wireless communication systems 

[1,2]. However, the realization of the potential gains of massive MIMO systems heavily relies on the availability of 

accurate channel state information (CSI). In time-division duplex (TDD) systems, only the uplink channel needs to be 

estimated thanks to the channel reciprocity [3] and the training overhead scales linearly with the number of users, 

which is usually acceptable. However, in frequency-division duplex (FDD) systems, the downlink CSI needs to be 

estimated and fed back to the base station (BS) by the users, where the downlink training and uplink feedback overhead 

scales linearly with the number of antennas at the BS and can substantially deteriorate the system efficiency. Since the 

challenge mainly comes from the large number of antennas, dimension reduction is a natural idea that comes to mind. 

In practice, the BS is usually located in high altitude with few surrounding scatters [4], so the angular spread of incident 

signals of each user at the BS is narrow. Consequently, the channel covariance matrix (CCM) possesses low-rank 

characteristics. To exploit this, the original channels are approximated with a few main eigenvalues and eigenvectors in 

[5,6] to reduce the effective channel dimensionality. However, the involved eigen-decomposition operation requires 

high computational complexity and the acquisition of accurate CCM in massive MIMO systems also requires extra 

overhead. An alternative method is to exploit the basis expansion model (BEM), which reduces the number of 

parameters to be estimated by exploiting the channel sparsity in specific domains [7,8]. In [7], a spatial BEM has been 

proposed to transform the problem of estimating channel impulse responses to that of estimating spatial basis function 

weights, which are sparse due to the physical scattering characteristics. The spatial and frequency wideband effects are 

considered in [8], where the channel sparsity in the angle and the delay domains is exploited, and angular and delay 

rotations are used to further enhance the sparsity level. Although more computationally efficient, the BEM methods 

inevitably introduce approximation error to channel estimation due to the imperfect model. A comprehensive overview 

of low-rank channel estimation methods for massive MIMO systems can be found in [9].  

In conventional massive MIMO systems, each antenna is equipped with a dedicated radiofrequency (RF) chain, which 

leads to high hardware and energy cost when the number of antennas is large. To tackle this issue, the so-called hybrid 

analog-digital (HAD) architecture has been proposed, where the multi-antenna array is connected to only a limited 

number of RF chains through phase shifters in the analog domain [10,11]. However, the channel estimation problem 

becomes more difficult in the context of HAD since now the received signals at the BS are not the original signals at 
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antennas, but only a few of their linear combinations. In this situation, the conventional least-square (LS) estimator 

becomes inefficient with dramatically increased overhead [12]. In [13], the complete channels are obtained by LS in the 

preamble stage and directions-ofarrival (DoAs) of channel paths are estimated first. Since the DoAs change slowly and 

can be used for a relatively long period, only channel gains of each path need to be re-estimated. Usually, the number 

of paths is much smaller than that of antennas in millimeter wave systems, therefore greatly reducing the estimation 

overhead. An alternative method is to adopt the compressive sensing (CS) methods to directly recover the sparse 

channels all at once, such as orthogonal matching pursuit (OMP) [14], sparse Bayesian learning (SBL) [15], etc. 

Through embedding the structural characteristics of channel sparsity, several improved CS algorithms have been 

further proposed, including structured SBL [16] and structured variational Bayesian inference (S-VBI) [17]. However, 

the performance of the CS algorithms heavily relies on the channel sparsity and the computational complexity is 

relatively high. 

 

Fig. 1: Tradition and neural network based channel estimation 

The main objective of the work is developing a deep neural network for channel estimation in OFDM massive MIMO 

systems. Adopting the autoencoder architecture, the region-specific measurement matrix is jointly4 learned with the 

channel estimator. The learned measurement matrix significantly improves the signal measurement efficiency than the 

conventional one, and the learned channel estimator has stronger estimation capability than the state-of-the-art CS 

algorithms, as well as lower computational complexity. 

II. RESEARCH METHODOLOGY 

This section deals with the methodology used by us to do the channel estimation. Here, we use deep learning 

techniques to perform channel estimation. For example, by viewing the resource grid as a 2-D image, we can turn the 

problem of channel estimation into an image processing problem, similar to denoising or super-resolution, where CNNs 

are effective. 

Using Matlab’s 5G Toolbox, we can customize and generate standard-compliant waveforms and channel models to use 

as training data. Using Matlab’s Deep Learning Toolbox, we use this training data to train a channel estimation CNN. 

This paper shows how to generate such training data and how to train a channel estimation CNN. The work also shows 
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how to use the channel estimation CNN to process images that contain linearly interpolated received pilot symbols. The 

work concludes by visualizing the results of the neural network channel estimator in comparison to practical and 

perfect estimators.Figure 2 represents the methodology that are being used to simulate the work described in this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Research Methodology flow chart 

In this work, The DM-RS symbols in the grid are used for channel estimation. This example does not transmit any data, 

therefore, the resource grid does not include any PDSCH symbols. To flush the channel content, append zeros at the 

end of the transmitted waveform. These zeros take into account any delay introduced in the channel, such as multipath 

and implementation delay. The number of zeros depends on the sampling rate, delay profile, and delay spread. Send 

data through the TDL channel model. Add additive white Gaussian noise (AWGN) to the received time-domain 

waveform. To take into account sampling rate, normalize the noise power. The SNR is defined per resource element 

(RE) for each receive antenna (3GPP TS 38.101-4). For an explanation of the SNR definition that this example uses, 

see SNR Definition Used in Link Simulations. Perform perfect synchronization. To find the strongest multipath 

component, use the information provided by the channel. OFDM-demodulate the received data to recreate the resource 

grid. 

 

III. RESULT AND DISCUSSIONS 

After successful implementation, we have tested the proposed method using software simulation. For software 

simulation, we have used Matlab environment with deep learning and 5G toolboxes. For clearity and to show the 

effectiveness of the work, we have compared the obtained result with some standard OFDM MI O channel estimation 

schemes. Here we perform and compare the results of perfect, practical, and neural network estimations of the same 

channel model. To perform perfect channel estimation, use the nrPerfectChannelEstimateMatlab function using the 

value of the path gains provided by the channel. To perform practical channel estimation, use the nrChannelEstimate 

function from Matlab 5G toolbox. This function will estimate the channel with taking into account some standard errors 

Generate the resource grid 

Insert DM-RS symbols 

Perform OFDM modulation 

Send modulated waveform through the 

channel model 

Add white Gaussian noise 

Perform OFDM demodulation and channel 

estimation 
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and noises during the transmission. To perform channel estimation using the neural network, we must interpolate the 

received grid. Then split the interpolated image into its real and imaginary parts and input these images together into 

the neural network as a single batch. Use the predict (Deep Learning Toolbox) function to make predictions on the real 

and imaginary images. Finally, concatenate and transform the results back into complex data. Fig. 3 represents the 

training statistics of the proposed neural network. From this figure, it is clear that the training completes in 5 epochs 

and we get a validation accuracy of 16.168. The total training time taken by the network while being trained is 3 

minutes and 56 seconds. 

 

Fig. 3: The training statistics of the proposed neural network. 

Fig 3 represents the result of channel estimation with (a) linear interpolation method (b) Practical estimator method, (C) 

neural network based proposed method and (d) the actual channel. Here from this figure, it is clear that the linear 

interpolation method shows a MSE of 0.17904, MSE of practical estimator is 0.034578 and the MSE of the proposed 

neural network based method is 0.019588 which is the lowest among all three. Fig. 4 represents the bit error rate vs 

SNR for a transmitter-receiver system having the proposed model as a channel estimation method with some other 

channel estimation methods such as Least Square Estimate (LSE) method and theoretical method. Here the DNN based 

our approach shows similar BER than the theoretical method. Fig. 5 represents the Mean square error (MSE) while 

estimating channel vs SNR for proposed method as well as other channel estimation methods. From this figure. It is 

clear that we are getting the minimum mean square error for the channel estimation using the proposed DNN based 

channel estimation method. 
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Fig. 4: Bit error rate vs SNR for channel estimation with the proposed method as well as some conventional methods. 

 

Fig. 5: Mean square error (MSE) while estimating channel vs SNR for proposed method as well as other channel 

estimation methods. 

IV. CONCLUSION 

In this paper, we studied the deep learning based channel estimation for the MIMO system with received SNR feedback 

in the quasi-static block-fading and time-varying fading scenarios. In this, we developed the novel technique for the 

joint MIMO channel estimation and pilot signal design by constructing the deep autoencoder with the CNN. In the 

time-varying scenario, the new channel estimation technique was proposed by combining the RNN and CNN. For the 

two fading scenarios, we construct the effective GAN and CGAN, respectively, to generate the artificial channel 

samples, and the training procedures using the artificial channel samples were also presented. The effectiveness and the 

superior performance of the proposed schemes were demonstrated through the numerical results. 
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